Oil/air cooler
BLK

Installation and Operation Instructions
Original instructions
Read this instruction carefully prior to installation and/or use. Pay attention particularly to all advises and safety instructions to prevent injuries. Bühler Technologies can not be held responsible for misusing the product or unreliable function due to unauthorised modifications.

All rights reserved. Bühler Technologies GmbH 2019
Contents

1 Introduction ... 2
 1.1 Intended use ... 2
 1.2 Model key .. 2
 1.3 Scope of delivery ... 2

2 Safety instructions ... 3
 2.1 Important advice ... 3
 2.2 General hazard warnings ... 3

3 Transport and storage ... 5

4 Installation and connection .. 6
 4.1 Requirements to the installation site .. 6
 4.2 Installing the unit ... 6
 4.2.1 Installing swivel nuts in the fitting body .. 6
 4.3 Hydraulic connection .. 7
 4.4 Electrical connections ... 7
 4.4.1 Electrical connections BLK 1-phase .. 8
 4.4.2 Electrical connection temperature switch TSA .. 8

5 Operation and control ... 10
 5.1 Before starting ... 10
 5.2 During starting ... 10

6 Maintenance .. 11
 6.1 Cleaning and disassembly of the cooler matrix .. 12
 6.2 Cleaning the cooler matrix inside ... 12
 6.3 Cleaning the fan case ... 13
 6.4 Replacing fan parts ... 13

7 Service and repair .. 14
 7.1 Troubleshooting .. 14

8 Disposal .. 15

9 Appendices .. 16
 9.1 Technical data .. 16
 9.1.1 Basic data (at 50 Hz frequency) .. 17
 9.1.2 Performance curves frame size 1-6... 18
 9.1.3 Performance curves frame size 7-10 ... 18
 9.2 Dimensions ... 19
 9.3 Functional diagram .. 20
 9.4 Installation torques and clamping range for cable fitting .. 21
 9.5 Screw torques ... 21
 9.6 Hose torques .. 21
 9.7 Calculations .. 21
 9.7.1 Calculating viscosity ... 21
 9.7.2 Table of operational viscosity for VG oil .. 22
 9.7.3 Calculating the pressure loss ... 22
 9.8 Pressure loss in straight pipes ... 22

10 Attached documents ... 24
1 Introduction

1.1 Intended use
BLK oil/air coolers are suited for the cooling of oils in hydraulic and lubrication systems. Their scope is given by their specifications. The use in other applications is not permitted without confirmation by Bühler Technologies GmbH.

1.2 Model key

<table>
<thead>
<tr>
<th>BLK 4.6- IBx - T50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of motor contacts</td>
</tr>
<tr>
<td>Frame size</td>
</tr>
</tbody>
</table>

To also have a bypass and/or thermal contact, the specification will be added to the type designation:

- Bypass version
 - AB (BLK 2-10) external bypass
 - IB (BLK 3-9) internal bypass
 - ITB (BLK 3-9) internal temperature-dependent bypass 2 bar / 45 °C
 - ATB (BLK 2-9) external temperature-dependent bypass 2 bar / 45 °C
 - x bypass value 2 bar, 5 bar, 8 bar

- Temperature switch
 - T50, T60 Temperature in °C, specification see separate data sheet
 - T70, T80

1.3 Scope of delivery
- 1 x Oil/air cooler
- Product documentation
2 Safety instructions

2.1 Important advice

Operation of the device is only valid if:
– the product is used under the conditions described in the installation- and operation instruction, the intended application according to the type plate and the intended use. In case of unauthorized modifications done by the user Bühler Technologies GmbH can not be held responsible for any damage,
– when complying with the specifications and markings on the nameplates.
– the performance limits given in the datasheets and in the installation- and operation instruction are obeyed,
– monitoring devices and safety devices are installed properly,
– service and repair is carried out by Bühler Technologies GmbH,
– only original spare parts are used.
This manual is part of the equipment. The manufacturer keeps the right to modify specifications without advanced notice. Keep this manual for later use.

Signal words for warnings

DANGER
Signal word for an imminent danger with high risk, resulting in severe injuries or death if not avoided.

WARNING
Signal word for a hazardous situation with medium risk, possibly resulting in severe injuries or death if not avoided.

CAUTION
Signal word for a hazardous situation with low risk, resulting in damaged to the device or the property or minor or medium injuries if not avoided.

NOTICE
Signal word for important information to the product.

Warning signs

In this manual, the following warning signs are used:

- Warning against hazardous situations
- Warning against high pressure
- Warning against electrical voltage
- Warning against potentially explosive atmospheres
- Warning against hot surface
- General notice
- Warning against environmental hazard
- Disconnect from mains
- Warning against rotating parts
- Wear protection gloves

2.2 General hazard warnings

The equipment must be installed by a professional familiar with the safety requirements and risks.
Be sure to observe the safety regulations and generally applicable rules of technology relevant for the installation site. Prevent malfunctions and avoid personal injuries and property damage.
The operator of the system must ensure:
– Safety notices and operating instructions are available and observed,
– The respective national accident prevention regulations are observed,
– The permissible data and operational conditions are maintained,
– Safety guards are used and mandatory maintenance is performed,
– Legal regulations are observed during disposal,
– compliance with national installation regulations.
– Nearby equipment is EMC protected, e.g. through shielding.
– The current and voltage supply for the aggregate has a (mains) separator with adequate switching capacity. National re-
requirements must be observed.

Maintenance, Repair
Please note during maintenance and repairs:
– Repairs to the unit must be performed by Bühler authorised personnel.
– Only perform conversion-, maintenance or installation work described in these operating and installation instructions.
– Always use genuine spare parts.

Always observe the applicable safety and operating regulations in the respective country of use when performing any type of

DANGER

Electrical voltage

Electrocution hazard.

a) Disconnect the device from power supply.
b) Make sure that the equipment cannot be reconnected to mains unintentionally.
c) The device must be opened by trained staff only.
d) Regard correct mains voltage.

CAUTION

Hot surface

Burning hazard
Let the device cool down before maintaining.

CAUTION

High pressure

Hazard of injury due to flung off parts or oil, environmental hazard due to oil.

a) Before starting any maintenance or repair to the oil circuit, make sure that the device
 is depressurized. This applies to the locking screws as well.
b) Avoid environmental pollution (oil spills) during cleaning or maintenance of the oil
circuit.
c) Use drip pans.

DANGER

Potentially explosive atmosphere

Explosion hazard if used in hazardous areas.
The device is not suitable for operation in hazardous areas with potentially explosive at-
mospheres.
3 Transport and storage

The product should only be transported inside the original packaging or a suitable alternative. Ensure secure fastening and mooring.

Units with air coolers have M10 eye bolts at the top of cooler housing for transport. Please note, due to the variety of versions the mounting bracket is not located at the exact centre of gravity and the cooler may swing when hoisted. Never hoist by the M8 threads in the cooling elements!

Only use the engine transport eyes to hoist the engine without add-ons.

Do not use the eye bolts according to DIN 580 in ambient temperatures below -20 °C. The eye bolts could fracture in these temperatures, injuring personnel and/or damage the system.

Do not strain the eye bolts more than 45° in the thread direction.

When not in use, the equipment must be protected from moisture and heat. They must be stored in a covered, dry, dust-free room at room temperature.

WARNING

Crushing hazard

Crushing hazard during equipment transport and set-up.

Use the correct hoisting gear to prevent injuries during hoisting.

Be sure the hoisting gear is free from defects and approved for the weight of the oil/air cooler.

Ensure secure fastening and mooring when transporting.
4 Installation and connection

4.1 Requirements to the installation site

Aggregate
The aggregate must be set up to allow for unobstructed air flow and adequate room for maintenance/repairs. When installed outdoors, be sure to consider the motor protection rating (standard: IP 55) and ensure adequate protection from the weather.

Air cooler
The aggregate must be set up to allow for unobstructed air flow and adequate room for maintenance/repairs. When installed outdoors, be sure to consider the motor protection rating and ensure adequate protection from the weather.

The cooler must be located in such a way that the air flowing through the matrix has free flow on entry and exit. The distance between air intake or air outlet to the nearest surrounding obstacle should be at minimum half the height of the matrix. Free air flow must be provided. If the cooler is to be sited near to working personnel, the effect of hot draught and noise emissions must be taken into account.

If the cooler is installed in closed space, ensure sufficient air circulation. Avoid back flow of warmed air. If necessary, the room must be vented.

Due to lower temperatures with respect to closed rooms, the cooling capacity outside raises, but on the other hand higher start up pressure may result due to higher oil viscosity. In this case, consider a bypass valve and/or a heating.

The rotating fan might lead to static charging. Therefore sensitive equipment like electronics should be kept away from the device.

4.2 Installing the unit

The units are screwed in place at the attachment points using screws. Be sure the support structure is sized adequately. To protect the system from damage, the connections must be stress free. We recommend using flexible hoses. Be sure the hose is stable against negative pressure, e.g. steel wire reinforced. Avoid possible leaks in the circuit to prevent environmental damages. If necessary, use an oil pan. Protect the aggregate from mechanical impact.

4.2.1 Installing swivel nuts in the fitting body

Proceed as follows:
– Carefully slide the preinstalled pipe end into the 24° cone on the fitting body.
– Tighten the swivel nut until a considerable increase in force can be felt (fixed point).
– Use a suitable spanner to tighten the swivel nut a 1/12 turn more (30°) beyond the fixed point. A marker line on the swivel nut and the fitting body facilitates observing the correct tightening angle.

<table>
<thead>
<tr>
<th>Tube A.D.</th>
<th>Thread</th>
<th>Torque (Nm) for straight screwed plug</th>
<th>Torque (Nm) sealing plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>G 1/8"</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>G 1/4"</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>G 1/4"</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>G 3/8"</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>15</td>
<td>G 1/2"</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>18</td>
<td>G 1/2"</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>22</td>
<td>G 3/4"</td>
<td>180</td>
<td>140</td>
</tr>
<tr>
<td>28</td>
<td>G 1"</td>
<td>310</td>
<td>200</td>
</tr>
<tr>
<td>35</td>
<td>G 1 1/4"</td>
<td>450</td>
<td>400</td>
</tr>
<tr>
<td>42</td>
<td>G 1 1/2"</td>
<td>540</td>
<td>450</td>
</tr>
</tbody>
</table>
4.3 Hydraulic connection

Carry out the hydraulic connection as described in the attached data. Connect the lines stress and vibration free, so typically using hoses.

Be sure to use suitable lines (with regard to pressure, fluid resistance, environmental influences, fire) when connecting to the hydraulic-, lubrication circuit. Tighten the hose lines with a suitable torque (see appendix).

Contaminated fluids impact the life of the cooling system, we therefore recommend a purity class of 23/19/13 per ISO 4406.

If your hydraulic system is equipped with control or shut-off valves, we recommend protecting the cooling system with a pressure relief valve. No pressure relief valves are factory installed in the cooler.

When installing an air cooler in return lines, sudden changes to the flow rate can potentially cause significant pressure peaks which even safety relief valves cannot dampen. The limits for the static pressure must not exceed max. 21 bar, or 15 bar for dynamic pressure peaks. Otherwise an off-line cooler must be used.

The coolers are optionally available with external or internal bypass valve in the cooling matrix.

4.4 Electrical connections

CAUTION

Wrong mains voltage may damage the device.

Installation of the device shall be performed by trained staff only. Regard the voltage given on the type plate. Make sure that the cables have sufficient strain relief.

Fusing

Fusing has to be done due to local standards!

Polarity

Take care of the directional rotation of the motor. The fan rotates counter clockwise when regarded from the motor’s side!

Watch the direction arrow on the sticker.

The direction of rotation can be changed by reversing any two phases.

Use the applicable local regulations to determine the safety values and the cross-sections of connection leads. The motor and, if equipped, starting devices must be connected to protective earth.

Lead fuses protect the cables in case of a short circuit, but are not sufficient to protect the motor coils from burning due to overload. Therefore, install an adequate motor circuit breaker with high precision range of adjustment for thermal protection to protect the motor against overload and operation with two phases.

Adjust the motor circuit breaker according to the nominal value specified on the type plate of the motor. Operation outside the specified mains voltage and frequency range limits is prohibited.

Take appropriate measures to protect energised parts from being touched by persons and/or interference from foreign objects.

The operator of the equipment is responsible for ensuring lightning protection.

Connect the protective earth of the motor to the protective earth on site. Protective earth per DIN VDE 0100 must be connected to the marked earth lead terminal.
4.4.1 Electrical connections BLK 1-phase

![Diagram of electrical connections BLK 1-phase](image)

<table>
<thead>
<tr>
<th>Terminal 1 – 2</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 3</td>
<td>Not used (except for BLK 1)</td>
</tr>
<tr>
<td>Terminal PE</td>
<td>Protective earth (not BLK 1)</td>
</tr>
</tbody>
</table>

4.4.2 Electrical connection temperature switch TSA

The temperature switch TSA is installed in a cooling circuit with an oil/air cooler BLK as a typical application. Through reaching the switching temperature the fan-motor is switched-on and the oil will be cooled. After falling under the hysteresis the motor shuts off.

If the cooling matrix has an optional temperature contact type TSA, the maximum values (see below) must not be exceeded. If connecting it to a relay, a free wheel circuit has to be added. Carry out the connection according to the following specifications (numbering inside the connector):

<table>
<thead>
<tr>
<th>Temperature switch TSA</th>
<th>T50</th>
<th>switching temperature</th>
<th>50 °C</th>
<th>T60</th>
<th>60 °C</th>
<th>T70</th>
<th>70 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max. voltage</td>
<td>230 V AC/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max. switching current</td>
<td>2 A, contact load max. 100 VA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>switching function</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hysteresis</td>
<td>approx. 10 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>protection class</td>
<td>IP 65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature switch TS-BLK1</th>
<th>T50</th>
<th>switching temperature</th>
<th>50 °C</th>
<th>T60</th>
<th>60 °C</th>
<th>T70</th>
<th>70 °C</th>
<th>T80</th>
<th>80 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>voltage / switching temperature</td>
<td>12 V DC / 10 A</td>
<td></td>
<td>24 V DC / 5 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>switching function</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hysteresis</td>
<td>approx. 5 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>protection class</td>
<td>IP 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example wiring with temperature switch

<table>
<thead>
<tr>
<th>F1</th>
<th>K1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuse</td>
<td>Relay</td>
</tr>
<tr>
<td>F2</td>
<td>K2</td>
</tr>
<tr>
<td>Fuse</td>
<td>Circuit breaker</td>
</tr>
<tr>
<td>F3</td>
<td>S1</td>
</tr>
<tr>
<td>Fuse</td>
<td>Protecting device</td>
</tr>
<tr>
<td>H1</td>
<td>S2</td>
</tr>
<tr>
<td>Mains switch</td>
<td>Protecting device</td>
</tr>
</tbody>
</table>

Relay, circuit breaker and protecting devices are not part of the delivery.
5 Operation and control

WARNING
Danger due to rotating fan
Injuries to the hand may occur. Do not reach into the safety guard!

NOTICE
The device must not be operated beyond its specifications.

NOTICE
Abrupt flow variation can lead to pressure peaks that may damage the cooler matrix. Make sure that the specifications are not exceeded in this case!

5.1 Before starting
– Check that all parts are free of damage, especially the cooling element and fan guard. Do not put a damaged device into operation.
– Check if the two warning labels (rotating parts) on the cooler’s housing are fitted.
– Check the correct connections of oil and power circuits according to chapter „Installation and connection“.
– Make sure that all valves or other parts in the cooling circuit, which have to be opened, are opened.

5.2 During starting
First, check that the fan rotates counter clockwise when looking from the motor’s side.

CAUTION
Hot surface
Burning hazard
Let the device cool down before maintaining.

CAUTION
High pressure
Hazard of injury due to flung off parts or oil, environmental hazard due to oil.
 a) Before starting any maintenance or repair to the oil circuit, make sure that the device is depressurized. This applies to the locking screws as well.
 b) Avoid environmental pollution (oil spills) during cleaning or maintenance of the oil circuit.
 c) Use drip pans.

Noise level
Our cooler is supplied with a low noise pump. If the noise level increases significantly check if the suction line has the right dimension and if the pump works in the appropriate temp/viscosity range. Ask Bühler Technologies GmbH for technical advice.
6 Maintenance

During maintenance, remember:

– The equipment must be maintained by a professional familiar with the safety requirements and risks.
– Only perform maintenance work described in these operating and installation instructions.
– When performing maintenance of any type, observe the respective safety and operation regulations.

DANGER

Electrical voltage

Electrocution hazard.

a) Disconnect the device from power supply.

b) Make sure that the equipment cannot be reconnected to mains unintentionally.

c) The device must be opened by trained staff only.

d) Regard correct mains voltage.

CAUTION

Hot surface

Burning hazard

Let the device cool down before maintaining.

CAUTION

High pressure

Hazard of injury due to flung off parts or oil, environmental hazard due to oil.

a) Before starting any maintenance or repair to the oil circuit, make sure that the device is depressurized. This applies to the locking screws as well.

b) Avoid environmental pollution (oil spills) during cleaning or maintenance of the oil circuit.

c) Use drip pans.

Under normal operating conditions the aggregates are maintenance free. Preventive maintenance must therefore be routinely carried out by the operating company.

When doing so, please pay attention to:

– Tight screw fittings,

– Tightness,

– Damage to the aggregate (replace damaged parts),

– Abnormal (unusual) noise and vibration,

– Cooling matrix cleanliness. Dirt on the cooling matrix reduces the cooling capacity,

– Check warning labels for legibility and damage.

Electrical connections must be checked annually by a licensed electrician.

The outside of the motors, particularly the cooling ribs and cooling ducts as clean as possible to prevent compromising heat release.

Please note the specified protection against dust and moisture. Pressure cleaning is only permitted if the motor has the respective protection rating.

The motors feature ball bearings sealed on both sides. The grease filling is designed to last for the life of the unit. Greasing is not necessary.

The motor mounts may only be replaced by Bühler or a qualified specialist company.
Condensate drain holes at motors from manufacturer WEG

If the motor is used in surrounding with high humidity this could lead, depending on the ambient temperature, to formation of condensate inside the motor housing. Specially at longer nonoperation period. The motors of WEG have a condensate drain plug which can be used for draining off. Pull out the plug according to the pictures and push it then back. If the plug is not pushed back or completely removed, the motor losses the IP degree of protection.

Condensate drain bore (plug)

6.1 Cleaning and disassembly of the cooler matrix

Due to the design of the cooling fins, the cooler has low susceptibility to dust and dirt. Normally, it is sufficient to clean the front surface with a brush. If the ambient air is loaded with higher amounts of oil or dust, it may be necessary to clean the cooling matrix in regular intervals.

– First, let the cooling matrix cool down. Then disconnect the motor from the mains and secure it against reconnecting.
– Depressurize the system and disconnect the piping. Place an oil drip pan below the cooling matrix to collect leaking oil.
– Close all connections with plugs to avoid further oil leakage.
– Protect the cooling matrix from falling down.
– Dismantle the cooling matrix from the fan case by loosening the 4 fastening bolts. The cooler sizes 6 up to 8 provide threads for eyebolts in the cooler matrix for lifting with hoisting devices.
– Take it to the cleaning area. Be careful not to damage the fins during transport and cleaning.
– Clean the matrix by blowing pressurized air from the rear side through the fin rows in parallel.
– If dirt is wet and sticky use steam cleaner and /or some washing agent. In this case, rinse the cooler matrix with pure water.
– Remount the cooling matrix in reverse order.
– Regard correct mounting of the connecting sleeves.

6.2 Cleaning the cooler matrix inside

In the event of deposits in the cooling matrix due to inadequate filtration, you may try to remove these as follows after cleaning the outside:

– Remove the cooler matrix as described in “Cooler matrix cleaning and disassembly”.
– Add degreaser and close the cooler matrix.
– After allowing the degreaser to sit for a while, drain and flush the cooler matrix with clean fluid. Dispose of the degreaser and flushing oil as required by law.
– After cleaning, remount the cooler matrix in reverse order.
6.3 Cleaning the fan case
Due to the design, dust and dirt will not deposit in a large amount inside the fan case. Nevertheless, any deposits of dirt should be blown out each time the cooler is cleaned.

6.4 Replacing fan parts

– Disconnect the motor from the mains and protect it from being re-connected unintentionally.
– Now remove the mains cable.
– There are two different fan models.
– Model with fixed fan hub, the fan can be replaced only together with the hub.
– Models with separated hub and fan, the fan can be replaced without replacing the hub.

Models without motor support:

– Secure the fan unit against falling.
– Then loosen the four fixing bolts at the case on top of the fan guard.
– Now you can pull out the fan unit carefully to the back.
– Remount the new fan in reverse order. If the fan is replaced, insert the screw adding with glue.

Models with motor support and mounting brackets:

– Secure the fan unit against falling.
– Loosen the four fixing bolts at the case on top of the mounting brackets.
– Unscrew the four screws connecting the fan unit to the housing at the tips of the fan guard.
– The fan unit can now be pulled out carefully to the back.
– Remount the new fan in reverse order. If the fan is replaced, insert the screw adding with glue.

Models with motor support and elongated holes in the mounting rails:

– Secure the fan unit against falling.
– Loosen the screws fixing the support to the coolers feet about two revolutions.
– Unscrew the four screws connecting the fan unit to the housing at the tips of the fan guard.
– The fan unit can now be pulled out carefully to the back.
– Remount the new fan in reverse order. If the fan is replaced, insert the screw adding with glue.

Models with motor brackets and holes in the mounting rails:

– Secure the fan unit against falling.
– Loosen the screws fixing the support to the coolers feet about two revolutions.
– Unscrew the four screws connecting the fan unit to the housing at the tips of the fan guard.
– The fan unit can now be pulled out carefully to the back.
– Remount the new fan in reverse order. If the fan is replaced, insert the screw adding with glue.
7 Service and repair

This chapter contains information on troubleshooting and correction should an error occur during operation. Repairs to the unit must be performed by Bühler authorised personnel.

Please contact our Service Department with any questions:

Tel.: +49-(0)2102-498955 or your agent

If the equipment is not functioning properly after correcting any malfunctions and switching on the power, it must be inspected by the manufacturer. Please send the equipment inside suitable packaging to:

Bühler Technologies GmbH
- Reparatur/Service -
Harkortstraße 29
40880 Ratingen
Germany

Please also attach the completed and signed RMA decontamination statement to the packaging. We will otherwise be unable to process your repair order.

You will find the form in the appendix of these instructions, or simply request it by e-mail:

service@buehler-technologies.com.

7.1 Troubleshooting

<table>
<thead>
<tr>
<th>Problem / Failure</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling capacity not sufficient</td>
<td>- Ambient air temperature is higher than specified</td>
<td>- Select larger model</td>
</tr>
<tr>
<td></td>
<td>- Motor’s rotation direction wrong</td>
<td>- Correct connection, see Electrical connections</td>
</tr>
<tr>
<td></td>
<td>- Motor doesn’t start</td>
<td>- Correct connection, see Electrical connections</td>
</tr>
<tr>
<td></td>
<td>- Air flow too low</td>
<td>- Correct connection, see Electrical connections</td>
</tr>
<tr>
<td></td>
<td>- Air fins clogged</td>
<td>- Clean cooler matrix, see Maintenance</td>
</tr>
<tr>
<td></td>
<td>- Near obstacles</td>
<td>- Regard minimum distance</td>
</tr>
<tr>
<td></td>
<td>- Oil flow too low</td>
<td>- Increase oil flow</td>
</tr>
<tr>
<td></td>
<td>- Oil channel clogged</td>
<td>- Cleaning, see chapter Cleaning the cooler matrix inside</td>
</tr>
<tr>
<td></td>
<td>- Oil circuit blocked</td>
<td>- Open valves and cocks</td>
</tr>
</tbody>
</table>

Tab. 1: Troubleshooting
8 Disposal

Dispose of the parts in such a way that does not present a danger to other people's health or to the environment. Observe the legal requirements in the country of use for the disposal of electrical components and oils and coolants.
9 Appendices

9.1 Technical data

Technical Data

| Materials / surface protection | Aluminium, painted
ventilation box, safety guard and motor brackets:	plastic-coated steel
Colours	RAL 7001 / Motor: RAL 7024/7030
Operating fluids:	Mineral oils per DIN 51524
	oil-/water emulsions HFA and HFB per CETOP RP 77 H
	Water glycol HFC per CETOP RF 77 H
	Phosphoric ester HFD-R per CETOP RP 77 H

Operating pressure

	static
BLK 1.2:	max. 16 bar
BLK 2.2 – BLK 10.8:	max. 21 bar
dynamic	
BLK 1.2:	11 bar (at 5 M load cycle, 3 Hz)
BLK 2.2 – BLK 10.8:	15 bar (at 5 M load cycle, 3 Hz)

Operating oil temperature:

| | max. 80 °C (higher upon request) |
| Ambient temperature | -15 to 40 °C |

Electric motors (others available upon request)

Voltage / frequency:	230 V - 50 Hz
BLK 1.2:	220/380 – 245/420V 50Hz
BLK 2.2 – BLK 10.8:	220/380 – 280/480V 60Hz

Thermal stability:

| Class of insulation F, utilisation per Class B |

Protection class:

| BLK 1.2: | IP44 |
| BLK 2.2 – BLK 10.8: | IP55 |

The motors comply with standards

IEC 60034, IEC 60072, IEC 60085
9.1.1 Basic data (at 50 Hz frequency)

<table>
<thead>
<tr>
<th>Item no.</th>
<th>Cooler type</th>
<th>Motor power</th>
<th>Number of poles</th>
<th>Rated current at 400 V</th>
<th>Weight (kg)</th>
<th>Capacity (L)</th>
<th>Noise level (A)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3501200</td>
<td>BLK 1.2</td>
<td>0,05 kW / 2 / 0,24 A (230 V)</td>
<td>7</td>
<td>0,8</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3502200</td>
<td>BLK 2.2</td>
<td>0,55 kW / 2 / 1,4 A</td>
<td>23</td>
<td>1,3</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3502400</td>
<td>BLK 2.4</td>
<td>0,18 kW / 4 / 0,6 A</td>
<td>23</td>
<td>1,3</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3503200IE3</td>
<td>BLK 3.2</td>
<td>1,1 kW / 2 / 2,3 A</td>
<td>34</td>
<td>1,8</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3503400</td>
<td>BLK 3.4</td>
<td>0,25 kW / 4 / 0,9 A</td>
<td>28</td>
<td>1,8</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3504400</td>
<td>BLK 4.4</td>
<td>0,37 kW / 4 / 1,1 A</td>
<td>34</td>
<td>2,3</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3504600</td>
<td>BLK 4.6</td>
<td>0,18 kW / 6 / 0,6 A</td>
<td>34</td>
<td>2,3</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3505400IE3</td>
<td>BLK 5.4</td>
<td>0,75 kW / 4 / 1,9 A</td>
<td>48</td>
<td>3,1</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3505600</td>
<td>BLK 5.6</td>
<td>0,25 kW / 6 / 0,9 A</td>
<td>42</td>
<td>3,1</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3506410IE3</td>
<td>BLK 6.4</td>
<td>2,2 kW / 4 / 4,6 A</td>
<td>77</td>
<td>4,1</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3506610</td>
<td>BLK 6.6</td>
<td>0,55 kW / 6 / 1,9 A</td>
<td>60</td>
<td>4,1</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3507410IE3</td>
<td>BLK 7.4</td>
<td>2,2 kW / 4 / 4,6 A</td>
<td>88</td>
<td>5,4</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3507610</td>
<td>BLK 7.6</td>
<td>0,55 kW / 6 / 1,9 A</td>
<td>72</td>
<td>5,4</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3508610IE3</td>
<td>BLK 8.6</td>
<td>1,5 kW / 6 / 3,8 A</td>
<td>104</td>
<td>6,3</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3508810</td>
<td>BLK 8.8</td>
<td>0,55 kW / 8 / 1,9 A</td>
<td>91</td>
<td>6,3</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3509610IE3</td>
<td>BLK 9.6</td>
<td>2,2 kW / 6 / 5,6 A</td>
<td>158</td>
<td>8,2</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3509810</td>
<td>BLK 9.8</td>
<td>1,1 kW / 8 / 3,2 A</td>
<td>155</td>
<td>8,2</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3510610IE3</td>
<td>BLK 10.6</td>
<td>5,5 kW / 6 / 12,8 A</td>
<td>258</td>
<td>19</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3510810</td>
<td>BLK 10.8</td>
<td>2,2 kW / 8 / 6 A</td>
<td>241</td>
<td>19</td>
<td>84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The item numbers for BLK 2.2-5.6 are 50/60 Hz versions, for BLK 6.4-10.8 only the 50 Hz version, please contact us for the 60 Hz version.

DIN EN ISO 3744, Class 3
9.1.2 Performance curves frame size 1-6

9.1.3 Performance curves frame size 7-10
9.2 Dimensions

MB on some models the motors are mounted with a bracket
* on BLK 9 and 10 = 150 mm
** Connection fitting on BLK 9 and 10 only

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLK 1.2</td>
<td>315</td>
<td>244</td>
<td>190</td>
<td>203</td>
<td>144</td>
<td>165</td>
<td>-</td>
<td>-</td>
<td>2x G1/2</td>
<td>7</td>
<td>20</td>
<td>50</td>
<td>33</td>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>BLK 2.2</td>
<td>370</td>
<td>370</td>
<td>203</td>
<td>118,5</td>
<td>464</td>
<td>510</td>
<td>230</td>
<td>25</td>
<td>3x G1</td>
<td>9</td>
<td>33</td>
<td>150</td>
<td>105</td>
<td>67</td>
<td>-</td>
</tr>
<tr>
<td>BLK 2.4</td>
<td>440</td>
<td>440</td>
<td>203</td>
<td>118,5</td>
<td>440</td>
<td>510</td>
<td>230</td>
<td>25</td>
<td>3x G1</td>
<td>9</td>
<td>33</td>
<td>150</td>
<td>105</td>
<td>67</td>
<td>-</td>
</tr>
<tr>
<td>BLK 3.2</td>
<td>440</td>
<td>440</td>
<td>203</td>
<td>118,5</td>
<td>440</td>
<td>510</td>
<td>230</td>
<td>25</td>
<td>3x G1</td>
<td>9</td>
<td>33</td>
<td>150</td>
<td>105</td>
<td>67</td>
<td>-</td>
</tr>
<tr>
<td>BLK 3.4</td>
<td>500</td>
<td>500</td>
<td>203</td>
<td>148,5</td>
<td>465</td>
<td>510</td>
<td>230</td>
<td>25</td>
<td>3x G1</td>
<td>9</td>
<td>33</td>
<td>175</td>
<td>104</td>
<td>67</td>
<td>-</td>
</tr>
<tr>
<td>BLK 4.6</td>
<td>500</td>
<td>500</td>
<td>203</td>
<td>148,5</td>
<td>465</td>
<td>510</td>
<td>230</td>
<td>25</td>
<td>3x G1</td>
<td>9</td>
<td>33</td>
<td>175</td>
<td>104</td>
<td>67</td>
<td>-</td>
</tr>
<tr>
<td>BLK 5.4</td>
<td>580</td>
<td>580</td>
<td>356</td>
<td>112</td>
<td>514</td>
<td>510</td>
<td>305</td>
<td>23,5</td>
<td>3x G1</td>
<td>9</td>
<td>33</td>
<td>200</td>
<td>100</td>
<td>67</td>
<td>-</td>
</tr>
<tr>
<td>BLK 5.6</td>
<td>580</td>
<td>580</td>
<td>356</td>
<td>112</td>
<td>490</td>
<td>510</td>
<td>305</td>
<td>23,5</td>
<td>3x G1</td>
<td>9</td>
<td>33</td>
<td>200</td>
<td>100</td>
<td>67</td>
<td>-</td>
</tr>
<tr>
<td>BLK 6.4</td>
<td>700</td>
<td>700</td>
<td>356</td>
<td>172</td>
<td>612</td>
<td>510</td>
<td>410</td>
<td>9,5</td>
<td>3x G1 1/4</td>
<td>9</td>
<td>33</td>
<td>225</td>
<td>110</td>
<td>67</td>
<td>x</td>
</tr>
<tr>
<td>BLK 6.6</td>
<td>700</td>
<td>700</td>
<td>356</td>
<td>172</td>
<td>548</td>
<td>510</td>
<td>410</td>
<td>9,5</td>
<td>3x G1 1/4</td>
<td>9</td>
<td>33</td>
<td>225</td>
<td>110</td>
<td>67</td>
<td>x</td>
</tr>
<tr>
<td>BLK 7.4</td>
<td>700</td>
<td>840</td>
<td>356</td>
<td>172</td>
<td>637</td>
<td>510</td>
<td>590</td>
<td>9,5</td>
<td>3x G1 1/4</td>
<td>9</td>
<td>33</td>
<td>250</td>
<td>91</td>
<td>67</td>
<td>x</td>
</tr>
<tr>
<td>BLK 7.6</td>
<td>700</td>
<td>840</td>
<td>356</td>
<td>172</td>
<td>570</td>
<td>510</td>
<td>590</td>
<td>9,5</td>
<td>3x G1 1/4</td>
<td>9</td>
<td>33</td>
<td>250</td>
<td>91</td>
<td>67</td>
<td>x</td>
</tr>
<tr>
<td>BLK 8.6</td>
<td>870</td>
<td>870</td>
<td>508</td>
<td>181</td>
<td>651</td>
<td>510</td>
<td>585</td>
<td>11</td>
<td>3x G1 1/4</td>
<td>12</td>
<td>33</td>
<td>275</td>
<td>101,5</td>
<td>67</td>
<td>x</td>
</tr>
<tr>
<td>BLK 8.8</td>
<td>870</td>
<td>870</td>
<td>508</td>
<td>181</td>
<td>624</td>
<td>510</td>
<td>585</td>
<td>11</td>
<td>3x G1 1/4</td>
<td>12</td>
<td>33</td>
<td>275</td>
<td>101,5</td>
<td>67</td>
<td>x</td>
</tr>
<tr>
<td>BLK 9.6</td>
<td>1010</td>
<td>1020</td>
<td>518</td>
<td>246</td>
<td>714</td>
<td>890</td>
<td>822</td>
<td>3</td>
<td>4x G1 1/2</td>
<td>12</td>
<td>78</td>
<td>300</td>
<td>99</td>
<td>67</td>
<td>x</td>
</tr>
<tr>
<td>BLK 9.8</td>
<td>1010</td>
<td>1020</td>
<td>518</td>
<td>246</td>
<td>685</td>
<td>890</td>
<td>822</td>
<td>3</td>
<td>4x G1 1/2</td>
<td>12</td>
<td>73</td>
<td>300</td>
<td>99</td>
<td>67</td>
<td>x</td>
</tr>
<tr>
<td>BLK 10.6</td>
<td>1185</td>
<td>1185</td>
<td>600</td>
<td>292,5</td>
<td>852</td>
<td>910</td>
<td>940</td>
<td>5</td>
<td>4x SAE 2 1/2</td>
<td>12</td>
<td>73</td>
<td>325</td>
<td>130</td>
<td>94</td>
<td>x</td>
</tr>
<tr>
<td>BLK 10.8</td>
<td>1185</td>
<td>1185</td>
<td>600</td>
<td>292,5</td>
<td>830</td>
<td>910</td>
<td>940</td>
<td>5</td>
<td>4x SAE 2 1/2</td>
<td>12</td>
<td>73</td>
<td>325</td>
<td>130</td>
<td>94</td>
<td>x</td>
</tr>
</tbody>
</table>
9.3 Functional diagram

Standard version BLK 2

- Direction of flow left to right or vice versa.
- Internal bypass IB/ITB (BLK 3-9)
 - The oil inlet and outlet are always on the same side. Connections on the opposite side must be closed.

Standard version BLK 1, 3 to BLK 10

- Direction of flow top left to bottom right or the exact opposite. The oil outlet is always on the opposite side. The second connection must be closed.
- External bypass AB (BLK 2-10)/ATB (BLK 2-9)
 - Oil inlet always at the bottom. Other connections must be closed. Oil outlet always on the opposite side.

With bypass valve

- With temperature-dependent bypass valve
 - With temperature switch attached
9.4 Installation torques and clamping range for cable fitting

<table>
<thead>
<tr>
<th>Size</th>
<th>Strain relief clamping range (mm)</th>
<th>Installation torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12x1,5</td>
<td>3-6</td>
<td>1,5</td>
</tr>
<tr>
<td>M16x1,5</td>
<td>5-9,5</td>
<td>2,5</td>
</tr>
<tr>
<td>M20x1,5</td>
<td>8-13</td>
<td>3,5</td>
</tr>
<tr>
<td>M25x1,5</td>
<td>11-17</td>
<td>5</td>
</tr>
<tr>
<td>M32x1,5</td>
<td>15-21</td>
<td>5</td>
</tr>
<tr>
<td>M40x1,5</td>
<td>19-28</td>
<td>7,5</td>
</tr>
<tr>
<td>M50x1,5</td>
<td>27-35</td>
<td>7,5</td>
</tr>
<tr>
<td>M63x1,5</td>
<td>32-42</td>
<td>13</td>
</tr>
</tbody>
</table>

9.5 Screw torques

<table>
<thead>
<tr>
<th>Thread</th>
<th>Torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>3</td>
</tr>
<tr>
<td>M6</td>
<td>5</td>
</tr>
<tr>
<td>M8</td>
<td>12</td>
</tr>
<tr>
<td>M10</td>
<td>23</td>
</tr>
<tr>
<td>M12</td>
<td>40</td>
</tr>
</tbody>
</table>

9.6 Hose torques

<table>
<thead>
<tr>
<th>Connections/mounts</th>
<th>Torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hose connections DN20</td>
<td>180</td>
</tr>
<tr>
<td>Hose connections DN25</td>
<td>250</td>
</tr>
<tr>
<td>Hose connections DN32</td>
<td>350</td>
</tr>
</tbody>
</table>

9.7 Calculations

9.7.1 Calculating viscosity

Valid for VG-oil between 10 - 100 °C at an exactness from ± 5 %.

Definitions:

- \(V_40 \) = oil viscosity at 40 °C in cst
- \(T \) = temperature in °C
- \(\nu \) = viscosity in cst

\[
b = 159 \cdot \ln \frac{V_{40}}{0.23}
\]
\[
a = 0.23 \cdot e^{\frac{-b}{877}}
\]
\[
\nu = a \cdot e^{\frac{b}{T+95.2}}
\]

Example: oil VG 46

\[
\begin{align*}
b &= 159 \cdot \ln \frac{46}{0.23} = 842,4325 \\
a &= 0.23 \cdot e^{\frac{842,4325}{877}} = 0.08801 \\
\nu &= 0.08801 \cdot e^{\frac{842,4325}{25+95.2}} = 97.35 \text{ cst}
\end{align*}
\]
9.7.2 Table of operational viscosity for VG oil

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>VG 46</th>
<th>VG 68</th>
<th>VG 220</th>
<th>VG 320</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>264.45</td>
<td>444.77</td>
<td>2.120.17</td>
<td>3.489.92</td>
</tr>
<tr>
<td>20</td>
<td>131.96</td>
<td>210.85</td>
<td>861.60</td>
<td>1.350.22</td>
</tr>
<tr>
<td>30</td>
<td>73.58</td>
<td>112.61</td>
<td>404.31</td>
<td>607.96</td>
</tr>
<tr>
<td>40</td>
<td>46.00</td>
<td>68.00</td>
<td>220.00</td>
<td>320.00</td>
</tr>
<tr>
<td>50</td>
<td>29.13</td>
<td>41.63</td>
<td>121.71</td>
<td>171.40</td>
</tr>
<tr>
<td>60</td>
<td>20.04</td>
<td>74.99</td>
<td>49.00</td>
<td>102.85</td>
</tr>
<tr>
<td>70</td>
<td>14.43</td>
<td>27.86</td>
<td>33.61</td>
<td>65.66</td>
</tr>
<tr>
<td>80</td>
<td>10.78</td>
<td>19.58</td>
<td>24.01</td>
<td>44.12</td>
</tr>
<tr>
<td>90</td>
<td>8.32</td>
<td>14.32</td>
<td>10.84</td>
<td>30.94</td>
</tr>
</tbody>
</table>

Viscosity given in cst (mm²/s)

9.7.3 Calculating the pressure loss

Valid for smooth straight piping per meter at laminar current.

Definitions

- \(\nu \): Viscosity in cst
- \(\rho \): spec. gravity in kg/dm³
- \(DN \): tube diameter in mm
- \(V \): flow in m/s
- \(PV \): pressure loss in bar

\[
PV = \frac{0.32 \cdot \nu \cdot \rho \cdot V}{DN^2}
\]

Example: oil VG 46

\[
PV = \frac{0.32 \cdot 97.35 \cdot 0.8817 \cdot 3.18}{20^2} = 0.22 \text{ bar}
\]

NOTICE

Pressure loss increases significantly for bends and fittings. It might be necessary in some cases to determine the final shape of the suction line on site under specific conditions.

Please do not hesitate to contact us for help to calculate the pressure loss of the suction line for your specific application.

NOTICE

To avoid damage of the cooling system, make sure that the maximum pump pressure is not exceeded. High pressure may occur if the system is shut off or throttled at the pressure side.

9.8 Pressure loss in straight pipes

Pressure loss (bar) per metre in straight tubing with laminar flow of mineral oil:

<table>
<thead>
<tr>
<th>BFP 8 8 l/min – DN 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. °C</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60 °C – 100 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BFP 15 16 l/min – DN 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. °C</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60 °C – 100 °C</td>
</tr>
</tbody>
</table>
BFP 30 28 l/min – DN 32

<table>
<thead>
<tr>
<th></th>
<th>VG 46</th>
<th>VG 68</th>
<th>VG 120</th>
<th>VG 160</th>
<th>VG 220</th>
<th>VG 320</th>
<th>VG 460</th>
<th>VG 680</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 °C</td>
<td>0.04</td>
<td>0.07</td>
<td>0.15</td>
<td>0.22</td>
<td>0.33</td>
<td>0.54</td>
<td>0.88</td>
<td>1.48</td>
</tr>
<tr>
<td>20 °C</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.13</td>
<td>0.21</td>
<td>0.33</td>
<td>0.52</td>
</tr>
<tr>
<td>30 °C</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.07</td>
<td>0.09</td>
<td>0.14</td>
<td>0.22</td>
</tr>
<tr>
<td>40 °C</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>50 °C</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
</tr>
</tbody>
</table>

60 °C – 100 °C < 0.03 bar

BFP 60 57 l/min – DN 40

<table>
<thead>
<tr>
<th></th>
<th>VG 46</th>
<th>VG 68</th>
<th>VG 120</th>
<th>VG 160</th>
<th>VG 220</th>
<th>VG 320</th>
<th>VG 460</th>
<th>VG 680</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 °C</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.18</td>
<td>0.28</td>
<td>0.45</td>
<td>0.74</td>
<td>1.24</td>
</tr>
<tr>
<td>20 °C</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.08</td>
<td>0.11</td>
<td>0.18</td>
<td>0.27</td>
<td>0.43</td>
</tr>
<tr>
<td>30 °C</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.08</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>40 °C</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>50 °C</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
</tr>
</tbody>
</table>

60 °C – 100 °C < 0.03 bar

BFP 90 86 l/min – DN 40

<table>
<thead>
<tr>
<th></th>
<th>LVG 46</th>
<th>VG 68</th>
<th>VG 120</th>
<th>VG 160</th>
<th>VG 220</th>
<th>VG 320</th>
<th>VG 460</th>
<th>VG 680</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 °C</td>
<td>0.05</td>
<td>0.09</td>
<td>0.19</td>
<td>0.27</td>
<td>0.42</td>
<td>0.68</td>
<td>1.11</td>
<td>1.87</td>
</tr>
<tr>
<td>20 °C</td>
<td>0.03</td>
<td>0.04</td>
<td>0.08</td>
<td>0.12</td>
<td>0.17</td>
<td>0.26</td>
<td>0.41</td>
<td>0.65</td>
</tr>
<tr>
<td>30 °C</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.12</td>
<td>0.18</td>
<td>0.27</td>
</tr>
<tr>
<td>40 °C</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
<td>0.09</td>
<td>0.13</td>
</tr>
<tr>
<td>50 °C</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.07</td>
</tr>
</tbody>
</table>

60 °C – 100 °C < 0.04 bar

Note: Values in blue exceed the suction operation limit of -0.4 bar.
10 Attached documents

- Declaration of conformity KX350001
- RMA - Decontamination Statement
Hiermit erklärt Bühler Technologies GmbH, dass die nachfolgenden Produkte den wesentlichen Anforderungen der Richtlinie 2006/42/EG (MRL) in ihrer aktuellen Fassung entsprechen.

Die Produkte sind Maschinen nach Artikel 2 a).

Folgende Richtlinien wurden berücksichtigt:

2014/30/EU (EMV/EMC)
2014/35/EU (NSR/LVD)

Produkt / products: Öl-Luft Kühler / Oil/Air cooler
Öl-Nebenstromkühler / Offline Oil/Air cooler

Typ / type: BLK
BNK

Die Betriebsmittel dienen zur Kühlung beziehungsweise Förderung und Luftkühlung von Ölen in Hydraulik- und Schmierkreisläufen.
The equipment is suited for cooling respectively transportation and air cooling of oils in hydraulic and lubrication systems.

Das oben beschriebene Produkt der Erklärung erfüllt die einschlägigen Harmonisierungsrechtsvorschriften der Union:
The object of the declaration described above is in conformity with the relevant Union harmonisation legislation:

EN ISO 12100:2010
EN 55011:2009
EN 60204-1:2006
EN ISO 4413:2010
EN 61000-6-2:2005

Die alleinige Verantwortung für die Ausstellung dieser Konformitätserklärung trägt der Hersteller.
This declaration of conformity is issued under the sole responsibility of the manufacturer.

Dokumentationsverantwortlicher für diese Konformitätserklärung ist Herr Stefan Eschweiler mit Anschrift am Firmensitz.
The person authorised to compile the technical file is Mr. Stefan Eschweiler located at the company’s address.

Ratingen, den 05.02.2019

Stefan Eschweiler
Geschäftsführer – Managing Director

Frank Pospiech
Geschäftsführer – Managing Director

Bühler Technologies GmbH, Harkortstr. 29, D-40880 Ratingen,
Tel. +49 (0) 21 02 / 49 89-0, Fax. +49 (0) 21 02 / 49 89-20
Internet: www.buehler-technologies.com

XX 35 0001
RMA-Formular und Erklärung über Dekontaminierung
RMA-Form and explanation for decontamination

RMA-Nr. / RMA-No.

Die RMA-Nummer bekommen Sie von Ihrem Ansprechpartner im Vertrieb oder Service. You may obtain the RMA number from your sales or service representative.

Zu diesem Rücksendeschein gehört eine Dekontaminierungserklärung. Die gesetzlichen Vorschriften schreiben vor, dass Sie uns diese Dekontaminierungsersklärung ausgefüllt und unterschrieben zurücksenden müssen. Bitte füllen Sie auch diese im Sinne der Gesundheit unserer Mitarbeiter vollständig aus. This return form includes a decontamination statement. The law requires you to submit this completed and signed decontamination statement to us. Please complete the entire form, also in the interest of our employee health.

Firma/ Company

Firma/ Company
Straße/ Street
PLZ, Ort/ Zip, City
Land/ Country

Gerät/ Device
Anzahl/ Quantity
Auftragsnr./ Order No.

Grund der Rücksendung/ Reason for return

☐ Kalibrierung/ Calibration
☐ Modifikation/ Modification
☐ Reklamation/ Claim
☐ Reparatur/ Repair
☐ andere/ other

bitte spezifizieren/ please specify

Ist das Gerät möglicherweise kontaminiert?/ Could the equipment be contaminated?

☐ Nein, da das Gerät nicht mit gesundheitsgefährdenden Stoffen betrieben wurde./ No, because the device was not operated with hazardous substances.
☐ Nein, da das Gerät ordnungsgemäß gereinigt und dekontaminiert wurde./ No, because the device has been properly cleaned and decontaminated.
☐ Ja, kontaminiert mit:/ Yes, contaminated with:

explosiv/ explosive
entflammbar/ flammable
brandfördernd/ oxidizing
kompakierte Gase/ compressed gases
ätzend/ caustic
giftig, Lebensgefährlich/ poisonous, risk of death
gesundheitsgefährdend/ harmful to health
gesundheits- schädlich/ health hazard
einhaltungs- gefährdend/ environmental hazard

Bitte Sicherheitsdatenblatt beiliegen/ Please enclose safety data sheet

Das Gerät wurde gespült mit:/ The equipment was purged with:

Falls die Ware nicht gereinigt, also kontaminiert bei uns eintrifft, muss die Firma Bühler sich vorbehalten, diese durch einen externen Dienstleister reinigen zu lassen und Ihnen dies in Rechnung zu stellen.

Firmenstempel/ Company Sign

Datum/ Date

rechtsverbindliche Unterschrift/ Legally binding signature

DE000011
01/2019

Bühler Technologies GmbH, Harkortstr. 29, D-40880 Ratingen
Tel. +49 (0) 21 02 / 49 89-0, Fax: +49 (0) 21 02 / 49 89-20
E-Mail: service@buehler-technologies.com
Internet: www.buehler-technologies.com
Die Analyse defekter Baugruppen ist ein wesentlicher Bestandteil der Qualitätssicherung der Firma Bühler Technologies.

Um eine aussagekräftige Analyse zu gewährleisten muss die Ware möglichst unverändert untersucht werden. Es dürfen keine Veränderungen oder weitere Beschädigungen auftreten, die Ursachen verdecken oder eine Analyse unmöglich machen.

Analysing defective assemblies is an essential part of quality assurance at Bühler Technologies.

To ensure conclusive analysis the goods must be inspected unaltered, if possible. Modifications or other damages which may hide the cause or render it impossible to analyse are prohibited.

Electronic assemblies may be sensitive to static electricity. Be sure to handle these assemblies in an ESD-safe manner. Where possible, the assemblies should be replaced in an ESD-safe location. If unable to do so, take ESD-safe precautions when replacing these. Must be transported in ESD-safe containers. The packaging of the assemblies must be ESD-safe. If possible, use the packaging of the spare part or use ESD-safe packaging.

Observe the above specifications when installing the spare part. Ensure the part and all components are properly installed. Return the cables to the original state before putting into service. When in doubt, contact the manufacturer for additional information.